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The p r o b l e m  of the fo rmat ion  of eddy flow of tangent ia l  twist  is examined.  The fluid flow mode 
is l aminar .  The flow p a r a m e t e r s  a r e  found by the numer i ca l  solution of the comple te  s y s t e m  
of Navier  - Stokes equations.  

Twis ted  flows in pipes a r e  used extens ively  in the opera t ion of different  kinds of injector  andfeeder  units ,  
r e f r i g e r a t o r s ,  a number  of s e p a r a t o r  cons t ruc t ions ,  highly forced  furnace ,  hea t e r ,  and drying c h a m b e r s .  In 
this  connection,  the hydrodynamics  of eddy s t r e a m s  has  been the object  of caxeful  s tudy for s e v e r a l  decades  
[1, 2]. The re  a r e  s o m e  tens  of theore t i ca l  pape r s  in which a t t empts  a r e  made to c la r i fy  the physical  subs tance  
of the eddy effect  and to cons t ruc t  i ts  ma thema t i ca l  model .  The ma jo r i ty  of paper s  a r e  based  onthefol lowing 
physica l  hypotheses :  

1) the plane vor t ex  model  [3, 4]; 
2) the hollow twis ted  jet  model  [5, 6]; 
3) the model  of f r ee  vo r t ex  convers ion  into a forced  vo r t ex  [7-9]. 

The hypothesis  of the physical  or iginat ion of an  eddy flow in the en t rance  sect ion of a pipe and i ts  con-  
ve r s ion  into a forced  eddy, which co r r e sponds  to the following phys ica l  model ,  under l ies  the s tudy of the eddy 
effect  in this  paper :  jet is blown tangent ia l ly  into a cyl indr ica l  c h a m b e r ,  at some  dis tance f r o m  the blind end- 
face  wall ,  which twis ts  the fluid in the chamber .  

Such a flow scheme  is graphica l ly  expl icable  physical ly  and is s t r i c t ly  desc r ibed  by a s y s t e m  of equa-  
t ions.  Assuming  the flow to be i so the rma l  at this  s tage and the fluid p rope r t i e s  constant,  let us use  the a x i s y m -  
m e t r i c  s y s t e m  of N a v i e r -  Stokes and continuity equations 
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Let us s eek  the solution of the s y s t e m  of equations in a r ec t ang le ,  one of whose s ides  l ies on the axis  of 
s y m m e t r y  of the c h a m b e r ,  another  is on the gene ra t r ix ,  the th i rd  is on the blind end- face  wall ,  and the fourth 
will  be r e m o v e d  to the d is tance  a t  which the v iscous  incompress ib l e  fluid ro t a t e s  as a solid (forced eddy) inthe 
n u m e r i c a l  exper iment  [7-9]. 

Let x and r denote the d is tances  m e a s u r e d ,  r e spec t i ve ly ,  f r o m  the blind end-face  wall  along the axis  of 
s y m m e t r y  and f r o m  the pipe axis  in the r ad ia l  direct ion.  
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Fig. 1. Influence of the Reynolds number on the eddy flow configuration. I sos t ream-  
l ines:  a) for Re =10; b) Re=1000,  e) Re =66,000. 

Fig. 2. Profiles of the tangential component at the sections x=0.5;  1.0; 1.4, respect ively;  
r e sa l t  obtained on a 63 • 30 mesh  for compar ison is shown by dashes. 

The x, r in the initial sys tem of equations (1)-(4) a re  normal ized  with respec t  to R, v, w, U-Wen , P -  
pW2en and the Reynolds number is defined as follows.. Re =Wen R / v .  Then r and x vary  in the domains 0 _< 
r _<1, 0 _<x _<x0, respect ive ly ,  and the tangential nozzle is located in the subdomain x/z _<x _<Xp. The coordinates 
of the mesh modes va ry  within the intervals  1 _<j _<JR, I _<i _<IX. 

Eddy flow was analyzed in [10, 11] on the basis of the Navier -S tokes  equations. Use of such an approach 
is made difficult, according to the r e m a r k  in [12], by the lack of knowledge about the boundary conditions needed 
for uniqueness of the solution. 

In our case ,  the main difficulty is giving the boundary conditions of the tangential input. The possibil i t ies 
of a tangential supply of fluid in a pipe are  quite diverse.  The supply may be accomplished by means of one or 
more  holes or around the pipe c i rcumference  [2]. The holes may be c i rcu la r ,  oval, or  rec tangular  in c ross  
section; hence, a different distribution of the delivered fluid along the per imete r  of the pipe c ross  section and 
its length, as well as a deviation f rom the tangential input ( ~Ppx, r is possible.  

Since the configurations of the tangential nozzle sections and their  quantity exert  no governing influence 
on the aerodynamics  of the gas s t r eams  in an eddy chamber  [13], but the flow itself  is ax i symmetr ie  and is 
conserved even in the case of one tangential insert  [14, 15], let us wri te  the mean velocity distribution on the 
section of the entrance connection, which is uniform over the chamber  genera tor ,  as follows: 

u = cos %, (5) 

v = - -  cos %, (6) 

:- ~ ,  (7) 

where  q x  andcPr a re  determined as a function of the s t ruc ture  pa ramete r s  ~OTx, q~Tr, R, a and k a [16]. As 
has been mentioned above, conditions for the rotat ion of a solid a re  given at the exit. The conditions on the 
axis of s y m m e t r y  and on the walls  a re  standard. Therefore ,  a completely definite model of a tangentially 
twisted flow bounded by walls is obtained. 

For  the solution let us convert  this problem to s t r eam functions r  eddies w, and twist G by means of the 
formulas  
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Afte r  conve r s ion ,  the s y s t e m  of equat ions  and bounda ry  condi t ions  b e c o m e s  
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and on the  axis  of s y m m e t r y  for  0 -<x -<x 0 
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The s y s t e m  (8)-(10) was  so lved  n u m e r i c a l l y  with the boundary  condi t ions  (11)-(14) by the method of  bui ld-  
up. A homogeneous  d i f fe rence  s c h e m e  of  va r i ab le  d i r ec t ions  wi th  s e c o n d - o r d e r  a c c u r a c y  was  se l ec t ed ,  which 
is an ex tens ion  of the s c h e m e  developed in [17] to  an i r r e g u l a r  pa t t e rn .  F o r  i ts  cons t ruc t i on  we s t a r t  f r o m  the  
gene ra l  f o r m  of  the s e c o n d - o r d e r  pa rabo l i c  pa r t i a l  d i f fe ren t ia l  equation in two independent  va r i ab l e s  

au 
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w h e r e  the  funct ional  L has the f o r m  Lu = ~ L~u; 
c e = l  
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)o~ (z) ~ c > 0; co, c a r e  c o n s t a n t s .  The so lu t ion  of  the equat ion should  sa t i s fy  t h e b o u n d a r y  condi t ion 

u!r = q (z, x) (16) 
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and the  ini t ia l  condi t ion  

u (z, 0) = u o (z). (17) 

On the  spa t ia l  m e s h  Di, j (xi{ i=  1, 2, . . . ,  IX},  r j {  j = 1, 2, . . . .  JR})  and in t ime  D r ( r  k = kay-,  { k = 0, 1, ... } ), we 
a p p r o x i m a t e  the  d i f f e ren t i a l  p r o b l e m  (15)-(17) by the  d i f f e r ence  p r o b l e m  

y = A~y2~+l + A.zy2~ + q)2k+l, (18) 
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The  ini t ia l  condi t ion  
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and d i f f e r ence  boundary  condi t ions  should be appended to  (18)-(19); on the  t i m e  ha l f - spac ing  
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for  i =1 and i =IX, and we have on the main  t ime  spac ing  
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fo r  j = 1 and j = fiR. 

The nota t ion 
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have been used  in (18)-(22); we a p p r o x i m a t e  the s econd  de r iva t i ve s  by  a s e c o n d - o r d e r  divided d i f f e r ence  
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F o r  s imp l i c i ty ,  the t i m e  index has  been  omi t t ed  in t he se  no ta t ions ,  s ince  it is f ixed for  a given d i rec t ion  

To so lve  the s y s t e m  (18)-(22) we used  a f a c to r i z a t i on  method.  Hence ,  we r e d u c e  the d i f f e rence  equat ions  
(18)-(19) to the canon ica l  f o r m  for  this  method:  
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As an initial approximation we take either r i,j = 0.0006, co[, j = Gi, j = 0.01, or  the solution obtained for 
any other value of the modal parameter .  The solution of the equations in the sys tem (8)- (10) is per formed in 
sequence. After each iteration spacing, the boundary values of the eddy function were  reevaluated.  Having ob- 
tained the solution of the boundary-value problem (8)-(14), we determined the u,v,w velocity distribution by an 
inverse t ransformat ion.  

The computations were  per formed on a 39• 18 mesh nonuniform along the x axis. To ra i se  the 
accuracy ,  the mesh lines were  concentra ted in the domain of eddy current  formation;  18 of the 39 nodes were  
in the zone xp _<x _<Xp. Comparing the resu l t s  obtained to  the checking ws.lues (see Fig. 2) computed on a 
63 • 30 mesh permit ted us to see that the accuracy  of the solution was sufficiently high. The computation was 
executed on a "Minsk-32 N electronic computer.  The solution was considered achieved when the maximum 
rela t ive  change in values of the var iables  became less than 0.005 between success ive  i terat ions and this 
evolved after  400-800 i terations.  

The influence of the Reynolds number ,  which var ied  between 1 and 66,000, was est imated in the numerica l  
experiments .  Attention is turned to the fact (Fig. 1) that the twisting effect, substantially the centrifugal  force ,  
mainly shapes the complex eddy flow configuration, and forces  associa ted with gradients in the tangential com-  
ponent of the velocity produce a positive p r e s s u r e  gradient in the flow direction. The twist stabilized the eddy 
adjacent to the chamber  genera tor ,  which always originated at the entrance edge during intensive fluid del ivery,  
while a r e v e r s e  flow formed at the same  t ime in the cent ra l  portion. 

To clar i fy  the analysis ,  let us note that an increase  in the Reynolds number largely  implied an increase  
in the twists since Wen was expanded in v, w in the rat io 0.3 ." 0.7 because of s t ruc tura l  peculiari t ies  of the 
chamber .  

We observe  no influence of twist  in the s t r e a m  configuration in Fig. la ;  the Reynolds number is just 10, 
the velocity is negligible, the p r e s s u r e  is constant,  and laminar  flow fills the whole volume. 

As the Reynolds number increases ,  the tangential component grows and a p r e s s u r e  gradient cor respond-  
ingly or iginates ,  which, in turn,  exer ts  influence on the s t r e a m  configuration by shifting the flow to the c i r -  
cumference  of the chamber .  However, viscous fr ict ion quenches the twist intensity and the flow gradually 
re turns  to the center ,  tending to fill the whole section (Fig. lb). 

High tangential velocit ies originated near the genera tors  at a significant intensity of the p rocess  (Re = 
66,000), and under the influence of viscous frict ion they gradually damp out resul t ing in significant p r e s s u r e  
gradients which become sufficiently great  in o rder  to cease  r e v e r s e  flow along the axis. The picture of fully 
developed eddy flow is shown in Fig. le .  Besides, central  eddies originate in place of r eve r se  cur ren t s  in 
our case,  since the boundary conditions at the exit have been formed in such a way that drainage is not allowed. 
The qualitative picture,  obtained theoret ical ly ,  agrees  well with the c lass ica l  picture developed by experimental  
investigations,  which confi rms the co r rec tnes s  of the physical  hypothesis underlying the investigations. 

Only the tangential velocity component is taken into account in the major i ty  of theoret ical  r e sea r ches  on 
eddy flow, and moreover ,  to simplify the problem the boundary condition at the entrance is considered as a 
forced eddy entirely filling the whole pipe c ross  section. Prof i les  of the tangential velocity component in the 
entrance section and at some distance away are  represented  in Fig.  2. The kinetics of the damping of the twist 

due to viscous fr ic t ion is seen well.  

The profile obtained theoret ical ly  differs considerably f rom the profile compiled by means of the forced 
eddy law at the center  and the f ree  eddy law at the c i rcumference ,  and approximation by the functions w / r  = const for  
0 _<r _<r B and wr =const  for r B ~ r  --<R is c lear ly  unsat is fac tory ,  since the curva ture  for the curves  is distinct. 

The difference,  in principle,  between eddy flows after  a rotat ing pipe and tangential swi r le r s  should be 
mentioned. Rotation of the fluid is built up according to the law of a solid, i .e. ,  a forced eddy, to stabilize the 
s t r eam in only the f i rs t  case.  In all probabili ty,  solutions of many fine problems a re  contained in the explana- 
tion of the crux of this difference,  exactly as in the case  of the known "teapot effect." The behavior of a teapot 
depends on whether the fluid ro ta tes  together with the vesse l  or  in a fixed vesse l ,  where  in the lat ter  case  the 
teapots a re  collected a t  the center  because  of secondary  eddies. 

In conclusions let us consider  the fact  of a different determination of the location of the eddy radius by 
exper imenters ,  which some determine nea re r  to the center  of the chamber  r B ~. 0.3R, and others  at the c i r cum-  
ference r B ~. 0.7R. The difference can be explained by the p resence  of two maxima in the tangential compo-  
nent, whose location agrees  with the r B noted by the exper imenters .  
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The c i rcumferen t ia l  maximum of the tangential  component degenerates  considerably more  intensively 
than the inner maximum during fluid motion along the chamber  under the influence of viscous fr ict ion,  and a 
t ime  sets  in during continuation of this  p rocess  when only the inner maximum remains .  Hence, the c i r cum-  
ferent ia l  maximum is much more  definite in the tangential  entrance sect ion,  while the inner maximum is more  
definite at some distance away. In this connection, exper imen te r s  find the maximum depending on the sect ion 
under considerat ion.  

NOTATION 

p,  fluid density; ~, kinematic viscosi ty;  p ,  coefficient  of dynamic viscosi ty;  v, w, u radia l ,  tangential ,  
and axial fluid veloci ty  components;  P, hydrodynamic p r e s su re ;  R, chamber  radius ;  a ,  width of the tangential 
connector;  k a , number  of tangential  connectors ;  We n, mean veloci ty  in the tangential entrance;  ~Ox, angle be-  
tween the s t r e a m  veloci ty vec tor  and the pipe axis;  q~r, angle between the s t r e a m  veloci ty vector  and the pipe 
radius;  ~0 Tx,  ~0 T r ,  angle between the dkrection of the tangential  ent rance  direct ion and the pipe axis and r a -  
dius, respec t ive ly ;  u0, constant de termined f rom the law of fluid mass  conservat ion.  
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